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ABSTRACT
Energy extraction from ocean waves and conversion to

electrical energy is a promising form of renewable energy,
yet achieving economic viability of wave energy converters
(WECs) has proven challenging. In this article, the design
of a heaving cylinder WEC will be explored. The optimal
plant (i.e. draft and radius) design space with respect to
the design’s optimal control (i.e. power take-off trajectory)
for maximum energy production is characterized. Irregu-
lar waves based on the Bretschneider wave spectrum are
considered. The optimization problem was solved using a
pseudospectral method, a direct optimal control approach
that can incorporate practical design constraints, such as
power flow, actuation force, and slamming. The results pro-
vide early-stage guidelines for WEC design. Results show
the resonance frequency required for optimal energy pro-
duction with a regular wave is quite different than the res-
onance frequency found for irregular waves; specifically, it
is much higher.

1 Introduction
Ocean waves have the highest energy density among

renewable resources. Energy extraction from ocean waves
relies on dynamics, i.e. the destructive interference between
the waves and the oscillation of the wave energy converter
(WEC) [1]. Diverse WEC designs have been investigated,
particularly over the course of the last four decades (see
Ref. [2] for early work). Reviews of available WEC tech-
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FIGURE 1: Heaving cylinder wave energy converter.

nologies are available in Refs. [1, 3, 4].
In this article we focus on the heaving cylinder WEC

(HCWEC) connected to a power take-off (PTO) moored to
the ocean floor (Fig. 1), similar to the systems described
in Refs. [5, 6]. The cylinder radius is a, while the draft of
the cylinder, b, is the submerged length in still water. In
order to simplify the design, the buoy is assumed to be of
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constant density and of length 2b. Therefore, the vertical
position of the buoy mass center z is measured from the still
water level (SWL), which is h meters above the ocean floor.
The wave elevation is denoted η(t). As buoyancy forces the
heaving cylinder upward, motion is resisted by the PTO.
Work is done on the PTO at the rate

P (t) = FPTO(t)ż(t), (1)
where FPTO(t) is the PTO force and ż(t) is the vertical
velocity of the heaving cylinder. This system is similar to
a point absorber, i.e., heaving body WECs that are much
smaller than ocean wavelength λ and have only one mode of
oscillation in the vertical direction [2,7]. Here the HCWEC
design objective is defined as as maximizing the energy ab-
sorbed over a desired time horizon t0 ≤ t≤ tf :

max
∫ tf

t0

P (t)dt, (2)

where the time horizon is defined between t0 and tf . Many
studies treat η as a regular wave (e.g. η(t) = Asinωt) [8].
However, real ocean waves are not regular but irregular.
The key to producing a successful WEC is maximizing en-
ergy capture in irregular ocean waves.

1.1 Irregular Ocean Waves
An irregular incident wave field can be modeled with a

linear superposition of a finite number of linear Airy wave
components [9]. The surface elevation relative to the SWL
at a fixed position is approximated by

η(t) =
NI∑
i=1

ηi(t) =
NI∑
i=1

Hi
2 sin(ωit+θi) , (3)

where NI is the number of regular wave components used to
represent the irregular wave field, and Hi, ωi, and θi are the
wave height, angular frequency, and phase for component i,
respectively. The wave phase components, θi, are random
phase shifts. Increasing NI will improve the fidelity of the
wave field approximation. McTaggart noted that a mini-
mum of 20 wave components is needed to ensure accurate
modeling of an irregular seaway [10].

A wave spectrum, denoted S(ω), is required to define
the heights and frequencies of the wave components used to
construct η in Eqn. (3). The amplitude of the ith compo-
nent is:

Ai = Hi
2 =

√
2S(ωi)∆ωi, (4)

where ∆ωi is the wave frequency interval for component i.
The wave spectrum can be found experimentally for a par-
ticular location or empirical expressions can be used [11].
One common standardized spectrum is the Bretschneider
(BS) spectrum that describes a developing sea. It is also
known as the two-parameter ITTC spectrum [12]. The spec-

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

212019181716151413
12

11

10

9

8

7

6

5

4

3

21

ω (rad/s)

S
(m

2
·
ra
d
/
s)

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3

t (s)

η
(m

)

a)

b)

FIGURE 2: Bretschneider spectrum with H1/3 = 4 m and
Tp = 8 s where a) S(ω) and b) η(t).

trum has the general form:
S(ω) = α

ω5 e
−β/ω4

, (5)

where α and β are the empirical coefficients given by:

α= 487
(
H1/3
T 2
p

)2
, β = 1948.2

T 4
p

, (6)

where H1/3 is the mean wave height of the highest third of
the waves, and Tp modal period or the period associated
with peak energy density. A representative BS spectrum
can be seen in Fig. 2, including the discrete wave com-
ponents that comprise an irregular wave. Other common
wave spectra include the one- and two-parameter Pierson-
Moskowitz, ISSC, Liu, JONSWAP, Scott, Ochi-Hubble bi-
modal, TMA and Mitsuyasu [12]. Potential locations for
WEC deployment are not described by a single value for
the irregular wave parameters, but rather a set of them.
These sets usually are monthly approximations of the pa-
rameters [13,14] or frequency distributions of sea states [14].
Finally, with the wave components characterized, the wave
power per unit length is calculated using the following sum:

P̄ =
NI∑
i=1

1
16ρg

2H
2
i

ωi
, (7)

where ρ = 1025 kg/m3 is the sea water density and g =
9.81m/s2 is the gravitational constant.
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1.2 Design and Control of Wave Energy Converters
Early work in HCWEC design was performed in the

frequency domain [2, 7]. This technique requires a num-
ber of assumptions, including linearity and regular incident
waves. Many authors have stated that there is a fundamen-
tal difference between designing WECs for irregular versus
regular waves. Drew et al. asserted that a single frequency
of the incident sea wave will not predict the performance in
real systems [1]. Additionally, Tedeschi et al. emphasized
the need to use time-dependent solutions since the instan-
taneous extracted power in irregular waves is required for
realistic analysis [15]. While irregular waves may appear to
be a hinderance to WEC design, WECs in irregular waves
have the potential to produce better results than WECs in
regular waves under similar energy assumptions [16].

Often WEC studies consider both the physical system
design (e.g., in this study a,b) and the control system design
(e.g. feedback controller). This approach is one form of co-
design, a class of design methods for integrated physical
and control system design that often leads to significant
performance improvements [17–20]. A co-design approach is
the natural way to handle the WEC design problem since a
successful design hinges on exploiting the natural dynamics
of the ocean wave–buoy interaction [20,21].

In this article, WEC design studies will be presented
that employ fewer assumptions than many previous investi-
gations. To provide context for understanding these differ-
ences, a number of WEC control strategies will be reviewed,
followed by a discussion of the various PTO architectures
that have been investigated.

1.2.1 WEC Control Strategies While passive
WECs (i.e. no active control of FPTO) can produce energy,
incorporating active control increases significantly energy
production capability [15, 22, 23], increasing economic
competitiveness.

Reactive control was one of the earliest control strate-
gies developed [7]. Under the assumptions of linearity and
regular waves, it can be shown that the HCWEC’s dynamic
behavior can be described by a second-order transfer func-
tion without zeros that will maximize energy production
when the optimal velocity is given by:

ˆ̇z∗ = F̂e
2Rr

, (8)

where ˆ̇z∗ is the complex amplitude of the velocity trajec-
tory, F̂e is the excitation force, and Rr is the radiation
resistance (the real part of the WEC radiation impedance,
which depends on WEC geometry and wave frequency [7]).
Maximum energy production is then produced when veloc-
ity is in phase with excitation force, but only when the
particularly narrow assumptions described above are valid,
including regularity of incident waves. Another important

implication of Eqn. (8) is that a reactive control system
—i.e., a PTO is required that can inject energy into the
buoy/wave system, not just extract it—is required for opti-
mal energy production. Bidirectional power flow helps ex-
ploit natural WEC dynamics [20,21,24] to maximize power
production. Unfortunately, PTOs capable of bidirectional
power flow are difficult to implement in practice. In addi-
tion, Tedeschi et al. demonstrated that reactive control in
irregular waves is an inferior control strategy [15].

Wave energy extraction can be increased beyond what
is possible through optimal control strategies alone. If the
physical system is designed such that it resonates with in-
coming waves, similar to the behavior of electromagnetic
antennae or acoustic microphones, energy extraction can
be improved [7]. The natural frequency of a heaving point
oscillator is given by:

ω0 =

√
kb

m+mr(∞) (9)

where kb is the hydrostatic stiffness, m is the heaving body
mass, and mr(∞) is the infinite-frequency added mass that
arises from the motion of radiated waves. Hydrostatic stiff-
ness is a useful model for buoyancy that is analogous to
mechanical mass-spring systems; its value depends on buoy
geometry.

Since real ocean waves are not regular, WECs cannot
simply be designed according to the resonance conditions for
a particular frequency. This can be addressed by employ-
ing a WEC control system that boosts power production
in off-resonance conditions. One intuitive approach pro-
posed by Budal and Falnes involves ‘latching’ the system in
place (i.e. ż = 0 for a short period of time) [2]. The ob-
jective of latching control, sometimes referred to as phase
control [7,25,26], is to keep ż and Fe in phase (or at least to
align the extrema of these trajectories with respect to time).
This strategy is motivated by the phase requirement for re-
active control presented in Eqn. (8). Clement and Babarit
showed that a hybrid latching and declutching (freewheel-
ing) control strategy amplified power production substan-
tially, increasing it beyond the sum of the two strategies
individually [23].

Optimal control formulations in the time domain have
also been studied. These studies often treat buoy velocity
as the control input [7, 16,25]. While PTO force trajectory
can be calculated using the results of a velocity-based so-
lution, velocity (or any other system state) cannot be an
independent control input. Treating velocity as the control
input simplifies solution (e.g., it sidesteps singular optimal
control formulations), but the PTO force is a more real-
istic independent control variable. Clement and Babarit
used the simplified PTO model described in Eqn. (10) in
formulating an optimal control problem based on Pontrya-
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gin’s Maximum Principle; the resulting controller exhibited
latching behavior [23]. Lattanzio and Scruggs formulated a
linear-quadratic-Gaussian (LQG) optimal control problem,
finding the optimal casual control for a particular generator
arrangement [6]. Direct transcription has also been used to
solve WEC problems. Abraham and Kerrigan used a PTO
model composed of a linear damper and an active element,
resulting in bang-bang control of both control inputs [27].
Allison et al. made no assumptions on PTO architecture
to explore the upper limits of HCWEC performance and
gain insight into principles of ideal WEC operation in reg-
ular ocean waves [8]. Reactive, latching, and declutching
behavior all emerged as valid optimal control strategies de-
pending on particular combinations of design and operating
constraints.

A variety of suboptimal but more realistic control
strategies have been investigated. Valerio et al. have demon-
strated a system than switches controllers depending on sea-
son [13]. This seems to be a very natural proposition since
the sea states widely vary by season. Other methods such
as model predictive control [16], internal model control [13],
and feedback linearization [13] have been designed for real-
istic WEC control with varying levels of success. Realistic
controller implementations are necessary, but the likelihood
of success will depend on the initial controller architecture.

1.2.2 WEC PTO Architectures Frequently, the
PTO modeling is motivated by reactive control, i.e. mod-
eled as a linear spring-damper system:

FPTO = kPTOz+RPTOż, (10)
where the PTO stiffness kPTO corresponds to the capacitive
term and the PTO damping RPTO corresponds to the dissi-
pative term. Assuming regular wave input, and that these
coefficients can be tuned, a PTO design of this form can
be found that maximizes energy extraction [23]. The PTO
force in Eqn. (10), however, is fundamentally limited in the
trajectories in can produce. Many have used this PTO form
to provide analytic solutions to a variety of WEC prob-
lems [16, 23, 27, 28], but their results are only optimal with
respect to the specific simplified PTO architecture. There
is no reason to believe that these architectures will produce
the true system performance limits.

Realistic PTO systems have been develop that use hy-
draulics and electric machines. Hydraulic PTOs have been
proposed by some due to their ability to absorb energy from
the large, slow speeds of ocean waves [1, 26, 29]. Although
they are able to drive generators at near constant speeds,
they typically suffer from low transmission efficiency. Some
have proposed designs based on linear electric machines
[3,5,28]. This type of PTO has promise since it can provide
bidirectional power flow, but in many cases cannot provide
compressive (upward) force as it is typically connected via

cables to the buoy. Tedeschi et al. have proposed a PTO
where the WEC is attached to a rotational electric machine
with power electronics via a gear box [15]. This PTO ar-
chitecture has many advantages, including the ability to
provide bidirectional power flow and PTO force, rendering
it an especially promising PTO design strategy.

In this article we make very limited assumptions on the
PTO architecture; thus, the linear PTO restriction has been
removed, similar to the work performed in Ref. [8]. In the
following section we will outline our co-design problem for-
mulation including the system model. Finally, some results
and parametric studies will be presented.

2 Co-Design Problem Formulation
A co-design problem formulation is defined here to pro-

vide a means for solving the energy maximization problem.
The general co-design problem with a Bolza objective is:

min
ξξξ,u,xp

Ψ = Φ
(
ξξξ(t0), t0, ξξξ(tf ), tf ,xp

)
+
∫ tf

t0

L(ξξξ(t),u(t), t,xp)dt
(11a)

subject to :
ξ̇ξξ(t) = fd (ξξξ(t),u(t), t,xp) (11b)

φφφmin ≤ φφφ
(
ξξξ(t0), t0, ξξξ(tf ), tf ,xp

)
≤ φφφmax (11c)

Cmin ≤C(ξξξ(t),u(t), t,xp)≤Cmax (11d)

where ξξξ(t), u(t), xp = [a,b]T , and t represent, respectively,
the state, control, plant design variables, and time [30–32].
Eqn. (11a) is the cost functional that is to be minimized.
The dynamic constraints are given in Eqn. (11b). The
boundary constraints are given in Eqn. (11c), and the in-
equality path constraints are given in Eqn. (11d). These two
equations also include all necessary plant design constraints
(Eqn. (11c) is used for time-independent plant constraints
and Eqn. (11d) is used for constraints that need colloca-
tion).

2.1 Dynamic Constraints
The dynamic system model used in this article is similar

to the one described in Ref. [33]. The equation of motion
for the HCWEC in Fig. 1 can be written as

mz̈+Fe+Fr +Fv +Fb+FPTO = 0, (12)
where Fe is the excitation force, Fr is the radiation force,
Fv is the viscous force, and Fb is the buoyancy force. The
excitation force in irregular waves for bodies with a vertical
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axis of symmetry oscillating in heave is given by

Fe =
NI∑
i=1

√
ρg3Rr(ωi)

2ω3
i

ηi(t). (13)

The radiation force can be modeled as:

Fr =mr(∞)z̈+
∫ t

0
L(t− τ)ż(τ)dτ, (14)

where L(t) is the fluid-memory model. This term incorpo-
rates the energy dissipation due to waves generated by the
body motion [33]. The fluid-memory model is

L(t) = 2
π

∫ ∞
0

Rr(ω)
ω

sin(ωt)dω. (15)

The radiation force (along with Fe and Rr) can be com-
puted using wave interaction software [34]. Models that in-
corporate the convolution integral in Eqn. (14) are challeng-
ing to use with existing optimization algorithms as this inte-
gral results in integro-differential equations that are compu-
tationally expensive to simulate. In this study, the radiation
damping term will be approximated with a linear term, R̄r,
using weights based on S(ω):

R̄r =
NI∑
i=1

Rr(ωi)S(ωi)∆ωi∑NI
i=1S(ωi)∆ωi

(16)

Future studies will address the integral term through the
development of methods that support efficient direct calcu-
lation.

The buoyancy force is proportional to the submersion
depth, and due to its constant cross-sectional area is given
by the following formula:

Fb = gρπa2z = kbz. (17)
Finally, the viscous force will be approximated using the
linearized drag force:

Fv = 0.5CDρπa2żmaxż =Rv ż, (18)
where CD = 0.81 is the drag coefficient [35], and żmax = 3
m/s is the approximate maximum velocity of the HCWEC.
With all the forces defined, the general state space model
can be written as

ξ̇ξξ = Aξξξ+Bu+Ke, (19)
where:

A =
[

0 a12
a21 a22

]
, B =

[
0
b21

]
, K =

[
0
k21

]
,

ξξξ =
[
z(t)
ż(t)

]
, u= FPTO(t), e= Fe(t),

a21 = −kb
m+mr(∞) , a22 =

−
(
R̄r +Rv

)
m+mr(∞) , a12 = 1,

b21 = −1
m+mr(∞) , k21 = −1

m+mr(∞) .

2.2 Objective Function
The maximization of energy production over a finite

time interval 0→ T requires only the running cost term of
the Bolza objective, L(·). However, an additional quadratic
penalty term has been added since the control input appears
linearly in the Hamiltonian:

H(p, ξξξ,u, t) = ξ2u+pT (Aξξξ+Bu+Ke) , (20)
where p is the costate vector. Consequently, maximizing
energy production with respect to FPTO(t) is a singular op-
timal control problem (which is difficult, but possible to
solve) [32]. Kasturi and Dupont added a quadratic penalty
term to an analogous mass-spring-damper system to enable
efficient solution [36]. Clement and Babarit also noted that
their WEC system design problem was a singular optimal
control problem [23]. The optimization formulation (uncon-
strained version) used here is:

min
ξξξ,u,xp

−
∫ T

0

(
ż(t)FPTO(t) +Rpen[FPTO(t)]2

)
dt, (21)

where Rpen ∈ R≥0 is the penalty weight. The addition of
the penalty term perturbs the underlining problem, so us-
ing the smallest possible value of Rpen that still facilitates
solution is desirable. It is analogous to the energy required
for the PTO to make control decisions. The general strat-
egy used to find Rpen follows: select a large initial value,
solve Prob. (21), then iteratively decrease it by a power of
10 until the results appear to be physically improbable (i.e.,
unintuitively fast dynamics). A general rule is to attempt to
adjust the penalty term to a value significantly smaller than
the original objective term (|żFPTO|> |RpenF

2
PTO|,∀t).

2.3 Boundary Constraints
2.3.1 Periodic Constraints Irregular waves are pe-

riodic since they are a sum of periodic components. Typ-
ically, a few frequencies in wave spectrum are dominant
as evident in S(ω). Using these dominant frequencies, an
approximation for the period of the irregular wave can be
found. For the solution to be periodic as well, the states
must be the same at the initial and final time (written in a
form consistent with Eqn. (11c)):

000≤ ξξξ (T )− ξξξ (0)≤ 000. (22)
Adding this constraint results in a periodic optimal con-

trol problem, which arises in various applications including
vibrating systems [36] and aircraft cruise control [37]. Us-
ing a periodic optimal control approach for the design of
WEC control systems in irregular waves greatly reduces the
computational expense when compared to the conventional
strategy of using a large time horizon.
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FIGURE 3: a) Design space of a/h and b/h with data points
n, l from [14], white feasible region, all curves drawn using
neural network, darker lines indicate smaller geometric ratio
b) Rr(ω) using n points c) mr(ω) using 5 points d) Rr(ω)
using 5 points.

2.3.2 Time-Independent Plant Constraints The
mass of the HCWEC is equivalent to the submerged mass:

m= ρπa2b. (23)
The geometric design variables can be nondimensional-

ized as a/h and b/h. Closed-form solutions of Rr(ω) and
mr(ω) for a floating circular cylinder in finite-depth water
have been found [38]. Data was taken from Ref. [14] and
modeled using an artificial neural network (ANN) with 10
hidden layers. The objective used when fitting the ANN
was to preserve the shape of the curves with the modeled
points. Since a finite number of data points were used (14
curves for each coefficient), input constraints are needed to
preserve model accuracy.

0.02≤ a/h ≤ 0.14 0.08≤ b/h ≤ 0.40 (24)
The derivation is based on the data points locations shown
in Fig. 3a. Fig. 3b demonstrates the effect of a on Rr(ω).
Fig. 3c and Fig. 3d show the effect of b on both mr(ω)
and Rr(ω). Note that the 3 inner curves are at completely
different locations than the collected data points.

TABLE 1: Four Design Cases.

Case Cmin umin
1 −∞ −∞ Unconstrained
2 −∞ 0 No compr. PTO force
3 0 −∞ No reactive power
4 0 0 Both constraints

2.4 Inequality Path Constraints
2.4.1 Position Constraint If the buoy completely

leaves the water it will impact the water on its way back
down. This slamming of the HCWEC should be avoided.
The following constraint prevents this event:

z(t)− (η(t) + b)≤ 0. (25)
2.4.2 Power Constraint Practical PTOs (at least so

far) cannot provide bidirectional power flow [7]. Therefore,
we would like to study the effects on applying a power in-
equality path constraint on the PTO force trajectory:

Cmin ≤ ż(t)FPTO(t)≤∞, (26)
where Cmin can be either −∞ or 0.

2.4.3 Control Force Constraint Asymmetric con-
trol input bounds should be considered. In most previ-
ous studies no explicit control input bounds (e.g., umin ≤
u≤ umax) are employed, although Hals and Falnes imposed
symmetric PTO force constraints [16]. Asymmetric con-
straints (e.g., 0≤ FPTO ≤ Fmax) are useful for modeling
WECs where an upward force cannot be exerted on the
buoy because of a cable connection between the buoy and
the PTO. Asymmetric constraints are difficult to implement
using conventional optimal control methods, highlighting
the value of the direct optimal control methods such as di-
rect transcription or pseudospectral methods (introduced
in the next subsection). In this article, four different com-
binations of the power and control input constraints are
considered (see Table 1).

2.5 Solving Optimal Control Problems with Pseu-
dospectral Methods

Several options exist for solving the HCWEC opti-
mal control problem described above. Here the solution
was implemented using the General Pseudospectral Opti-
mization Software (GPOPS) Version 5.1 [31], which uses
the Radau Pseudospectral Method (RPM) with Legrende-
Gauss-Radau (LGR) collocation points and an hp-adaptive
mesh refinement algorithm. GPOPS has been used to
solve a wide variety of optimal control problems includ-
ing chemotherapy treatment [39] and spacecraft trajectory
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design [40]. The RPM is a direct method where the opti-
mality conditions are not explicitly derived. Instead, state
and control trajectories are parametrized using function ap-
proximation, and the cost is approximated using a quadra-
ture method. This converts the infinite-dimensional prob-
lem into a finite one, i.e. a nonlinear program (NLP). This
is an open-loop control design method, i.e. we have com-
plete freedom when designing the control trajectory. Direct
methods create a large number of algebraic equations that
ensure physics are satisfied at each time step. These equa-
tions are known as defect constraints. The particular form
of these constraints used in pseudospectral methods is

N∑
i=0

DkiΞΞΞ− fd(ΞΞΞ,U, t,xp) = 0 (k = 1, . . . ,N), (27)

where Dki is the differentiation matrix representing the La-
grange interpolating polynomial, ΞΞΞ is the matrix of dis-
cretized states, U is the matrix of discretized control tra-
jectories, and N is the degree of the polynomial. When
Eqn. (27) is satisfied, the interpolating polynomial correctly
models the dynamic system.

3 Numerical Results
Numerical experiments were performed for all four cases

using GPOPS. Additional parametric studies on the bounds
of the instantaneous power and velocity were also per-
formed.

3.1 Case Results
The results are performed on a hypothetical location

with h = 10 m described by the Bretschneider spectrum
with H1/3 = 4 m and Tp = 8 s. The phases were randomly
calculated for the 21 wave components used to construct η
over the range of 0.5 rad/s to 2.5 rad/s with ∆ω= 0.1 rad/s.
Our time horizon was determined to be T = 63 s by visually
approximating the periodicity of the wave (see Fig. 2b or η
in the cases). Since no constraints were directly placed on
the velocity, it was limited to ±3 m/s as high velocities are
hazardous to WEC operation [1].

The Rpen was set at 5× 10−5. When the param-
eter was reduced too far, bang–bang solutions resulted,
which is expected in a singular optimal control problem.
These bang–bang solutions, however, had impractically fast
switching behavior. In contrast, excessively large values for
the penalty parameter degraded energy production since a
large penalty resulted in low PTO force.

Initial studies employed a simultaneous co-design ap-
proach, optimizing the plant design variables and control
simultaneously [30]. Solution difficulty was too high with
this approach so nested co-design was employed. Paramet-

TABLE 2: Case Results.

Case 1 Case 2 Case 3 Case 4
a 0.59 m 0.39 m 1.40 m 1.40 m
b 1.71 m 0.80 m 0.80 m 1.09 m
m 1917 kg 392 kg 5049 kg 6880 kg

mr(∞) 413 kg 117 kg 4749 kg 5118 kg
T 2.89 s 2.04 s 2.50 s 2.77 s
Pavg 1.89 kW 1.30 kW 2.56 kW 1.97 kW

ric sweeps of (a,b) were performed for all four test cases. In
these sweeps, control was optimized for every pair consid-
ered. In Fig. 4 the percentage of available energy extracted
is shown. Adding more constraints (Case 4 has the most
constraints) increased numerical difficulties, as evidenced by
the numerical noise in Cases 3 and 4. The location of max-
imum energy extraction for each case is denoted by a white
dot. Table 2 characterizes each of these solutions. The
wave elevation (top-dashed), position (top-solid), velocity
(middle-dashed), PTO force (middle-solid), and instanta-
neous power (bottom-solid) are plotted for each of the four
cases in Figs. 5–8. For this particular irregular wave, the
wave power per unit length was 13.4 kW/m, calculated us-
ing Eqn. (7), while Pavg ranged from 10% to 19% of this
value.

The expected relative results of the average power ex-
tracted were P1 > P3 > P2 > P4 [8]. Case 1 is uncon-
strained (or the most unconstrained); therefore should have
the largest P . Similarly, P4 must be the smallest since it
is the most constrained. Analyzing these results, P1 > P2
and P3 > P4, implying the PTO force constraint is indeed
deteriorating the energy extraction. Adding the power con-
straint does not produce the expected result. We have al-
ready discussed guidelines for setting Rpen. However, due
to solution difficulty, the value used was quite high in order
to produce physically meaningful solutions. This caused the
quadratic cost term to dominate power term in Eqn. (21).
Therefore, solutions found in Cases 2-4 were actually worse
than using no control at all (i.e., the value of Eqn. (21)
was positive while a solution with zero control would result
in a zero value). On the other hand, Case 1 produced a
modified objective function value that was indeed negative.
This raises two questions regarding the algorithm’s desire
to choose solutions with positive modified objective values
and solution relevance. Addressing the first point, the initial
mesh (collection of the discrete time points) was undefined
so GPOPS’s mesh refinement algorithm iteratively creates
it. In addition, the initial values for the states and control
were zero–valued. Therefore, it seems like the zero-valued
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Case 1: Case 2: Case 3: Case 4:
FPTO ∈ R, P ∈ R FPTO ∈ R≥0, P ∈ R FPTO ∈ R, P ∈ R≥0 FPTO ∈ R≥0, P ∈ R≥0
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FIGURE 4: Design Space of the HCWEC for All Four Cases.
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FIGURE 5: Case 1 Results.

solution should have been found. We suspect that Cases 2-4
are local solutions. All of this implies that the penalty pa-
rameter was too high and since it could not be reduced, the
method used to avoid the singular optimal control aspect
was poor. This motivates the development of new methods
to account for this issue.
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FIGURE 6: Case 2 Results.

Even with all discussed issues with the solutions, these
feasible solutions provide design insights since they were
seeking the optimal energy extraction. For this point on,
it is important to remember that no design guidelines were
provided, only an objective and constraints. Therefore, all
phenomena that arise are due to the desired natural dynam-
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ics of the system.
WEC behavior, based on the optimal design for each

case, will now be explored. Case 1 exhibits locally harmonic
solutions for both the state and control (Fig. 5). A small
amount of reactive power (P < 0) is observed, particularly
around the more dynamic sections of the incoming wave.
The constraint in Eqn. (25) becomes active a number of
times. There are no large periods of constant position that
would indicate latching behavior, or periods of zero con-
trol force (declutching). Finally, the necessary condition
that all the trajectories are periodic is satisfied. In Case
2, shown in Fig. 6, a large number of zero-valued control
regions are observed. Declutching, therefore, is a necessary
control strategy when the PTO force constraint is active.
Similar to Case 1, many locally harmonic solutions were
found when declutching was not active.

For Cases 3 and 4, no reactive power was observed
due to the active power constraint (expect in a few mi-
nor locations where negative power exists within the algo-
rithm tolerance). The solutions in these cases were largely
non-harmonic. Declutching is apparent in Cases 3 and
4, although more abundant in Case 4 with the addition
of the PTO force constraint. Interestingly, latching was
quite prevalent. For at least a third of the wave, the de-
vice was latching. The device was released at the lowest
points of the wave, supporting previous work based on the
objective of keeping the excitation force and a device in
phase [2,7,25,26]. To summarize, the PTO force constraint
had the following effect: declutching, limited time extract-
ing power, and larger peak instantaneous power.

Finally, since the irregular wave was characterized by a
single period, one might postulate that this is the optimal
natural period of the HCWEC. This statement is true in
regular waves [7]. Using Eqns. (9), (17), and (23) while
nondimensionalizing the added mass coefficient to µ(ω0) =
mr(ω0)/(ρπa2b), the optimal draft can be calcuated such
that the HCWEC resonates with the incoming regular wave:

b= g

ω2
0 (1 +µ(∞))

. (28)

This is consistent with statements in Ref. [7]. The max-
imum value µ(∞) attains in our feasible design space is
≈ 0.94. The modal angular frequency for our study was
2π/Tp = 0.79 rad/s. Therefore, the smallest possible b
would be 8.2 m, which is outside our current feasible de-
sign space. However, the results are not trending toward
large values of b but smaller ones. Smaller b values indicate
higher frequency (or lower period) devices. The optimal
periods for each case can be seen in Table 2 with a range
of 2.04 s to 2.77s. Therefore, much higher frequencies (or
lower periods) are preferred relative to the modal period.
Higher frequency WECs can respond more rapidly to ac-

0 10 20 30 40 50 60

−3

0

3

t (s)

η
(m

)

 

 

0 10 20 30 40 50 60

−3

0

3

z
(m

)

η (m)
z (m)

0 10 20 30 40 50 60

−2

0

2

t (s)

ż
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FIGURE 7: Case 3 Results.
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ż (m/s)
FPTO (kN)

0 10 20 30 40 50 60

0

20

40

60

80

t (s)

P
(k
W

)

 

 

P (kW)
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tive control. In addition, HCWEC performance in irregular
waves is quite poor in off-resonance conditions, but > 40%
of the maximum energy production is possible with variety
of low-period buoy designs.

3.2 Parametric Studies
A WEC PTO must handle the largest value of the in-

stantaneous power that may occur, adding to system ex-
pense, and potentially sacrificing its cost to production ra-
tio. A power constraint (i.e. Cmax ≤ γ, γ is the maximum
allowed power) was added to Case 1 to investigate this prac-
tical design issue. This bound was varied from 10 kW down
to 0 kW. The results are shown in Fig. 9a. As expected, en-
ergy extraction decreases with γ. Increasing γ beyond 8 kW
does not improve energy performance noticeably. In fact,
when the maximum power is limited to Cmax = 3.3 kW, the
energy production is still 80% of the maximum, potentially
improving the energy/cost ratio. To illustrate system be-
havior more clearly, the power trajectory is plotted for a few
select values of γ in Fig. 9b. As the maximum power Cmax
is reduced, flat spots appear at the power bound. The width
of these flat spots increases with decreasing Cmax, allowing
the WEC to produce more energy than if the power tra-
jectory for the unconstrained case was simply “cut” at the
bound. In addition to reducing PTO power requirements,
introducing the power bound results in a more consistent
power level, which is desirable for grid integration.

A parametric study was also performed on the velocity
bound. The tradeoff between maximum velocity and en-
ergy extraction exhibited trend similar to the Cmax vs. P
relationship shown in Fig. 9a.

4 Conclusion
A significant amount of work has been performed in

the field of wave energy conversion. Both regular and ir-
regular waves are often considered, but predicting perfor-
mance in real ocean waves requires consideration of irregular
waves. Many detailed studies have addressed PTO design,
although assumptions commonly made in these studies re-
strict potential PTO designs. In this article a co-design
formulation was proposed with few PTO restrictions. Co-
design using direct transcription was an enabling technology
for the studies presented here. Even with the presence of
numerical difficulties, this approach provided insight into
the natural trajectories that maximize energy extraction.
Parametric studies were performed to explore the trade-offs
between energy production and cost. WEC designs with
unconstrained PTO control present many implementation
challenges, motivating the detailed study of the effects of
PTO force, power, and velocity bounds.
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Results of this investigation led to several important
conclusions: a) the frequency calculated with the opti-
mal plant design is higher than the modal period, b) a
higher percentage of available energy can be extracted in
off-resonance conditions in irregular waves than compara-
ble regular waves, c) the path constraint preventing the
slamming of the device is active, d) both declutching and
latching control strategies were present in the suboptimal
cases (Cases 2–4), and e) realistic trade-offs with energy
production can be made with respect to the maximum in-
stantaneous power or velocity to improve cost-effectiveness.
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